26 research outputs found

    Medication practice in hospitals: are nanosimilars evaluated and substituted correctly?

    Get PDF
    Introduction: This study investigates the drug selection and dispensing behaviour of hospital pharmacists of intravenous iron products including iron sucrose and iron sucrose similar, with special emphasis on substitution and interchangeability in France and Spain. Iron– carbohydrate complex drugs represent different available intravenous iron drugs and are part of the non-biological complex drug (NBCD) class, an expanding drug class with up to 30 brands available in intravenous pharmacotherapy and over 50 in clinical development. Follow-on versions of iron sucrose have appeared in some markets such as France and Spain, which were authorised by the generic approval pathway. However, differences in clinical efficacy and safety of iron sucrose similars compared with the reference originator drug Venofer have been observed, putting a question mark on their equivalence as assessed for authorisation and consequently their substitutability and interchangeability.Method: 70 French and 70 Spanish hospital pharmacists were surveyed via an online questionnaire on their formulary selection and dispensing behaviour of intravenous iron medicines.Results: There is little awareness about the characteristics of this class of drugs and the reported differences in safety and efficacy between iron sucrose and iron sucrose similars. In approximately 85% of cases the intravenous iron is chosen according to the hospital formulary. In 30% (France) and 34% (Spain) of cases an iron sucrose similar was dispensed because the formulary requires dispensing an alternative lower cost drug when available. In 26% (France) and 52% (Spain) of cases the physician is not informed on such a medication change using a similar product.Conclusions: Evaluation of NBCD similars for substitution and interchange by hospital pharmacists is rarely based on scientific and clinical criteria but rather on cost aspects only, which does not ensure safe, efficacious and cost-effective use of such drugs

    Probing subcellular iron availability with genetically encoded nitric oxide biosensors

    Get PDF
    Cellular iron supply is required for various biochemical processes. Measuring bioavailable iron in cells aids in obtaining a better understanding of its biochemical activities but is technically challenging. Existing techniques have several constraints that make precise localization difficult, and the lack of a functional readout makes it unclear whether the tested labile iron is available for metalloproteins. Here, we use geNOps; a ferrous iron-dependent genetically encoded fluorescent nitric oxide (NO) biosensor, to measure available iron in cellular locales. We exploited the nitrosylation-dependent fluorescence quenching of geNOps as a direct readout for cellular iron absorption, distribution, and availability. Our findings show that, in addition to ferrous iron salts, the complex of iron (III) with N,N’-bis (2-hydroxybenzyl)ethylenediamine-N,N’-diacetic acid (HBED) can activate the iron (II)-dependent NO probe within intact cells. Cell treatment for only 20 min with iron sucrose was also sufficient to activate the biosensor in the cytosol and mitochondria significantly; however, ferric carboxymaltose failed to functionalize the probe, even after 2 h of cell treatment. Our findings show that the geNOps approach detects available iron (II) in cultured cells and can be applied to assay functional iron (II) at the (sub)cellular level.Vifor Pharm

    Kupffer Cells and Blood Monocytes Orchestrate the Clearance of Iron-Carbohydrate Nanoparticles from Serum.

    Get PDF
    Intravenous (IV) iron nanoparticle preparations are widely used to treat iron deficiency. The mechanism of mononuclear phagocyte system-mediated clearance of IV iron nanoparticles is unknown. The early uptake and homeostasis of iron after injection of ferric carboxymaltose (FCM) in mice was studied. An increase in serum iron was observed at 2.5 h followed by a return to baseline by 24 h. An increase in circulating monocytes was observed, particularly Ly6Chi and Ly6Clow. FCM was also associated with a time-dependent decrease in liver Kupffer cells (KCs) and increase in liver monocytes. The increase in liver monocytes suggests an influx of iron-rich blood monocytes, while some KCs underwent apoptosis. Adoptive transfer experiments demonstrated that following liver infiltration, blood monocytes differentiated to KCs. KCs were also critical for IV iron uptake and biodegradation. Indeed, anti-Colony Stimulating Factor 1 Receptor (CSF1R)-mediated depletion of KCs resulted in elevated serum iron levels and impaired iron uptake by the liver. Gene expression profiling indicated that C-C chemokine receptor type 5 (CCR5) might be involved in monocyte recruitment to the liver, confirmed by pharmaceutical inhibition of CCR5. Liver KCs play a pivotal role in the clearance and storage of IV iron and KCs appear to be supported by the expanded blood monocyte population

    The similarity question for biologicals and non-biological complex drugs

    Get PDF
    AbstractFor small – low molecular weight – molecule medicines a robust regulatory system has evolved over the years. This system guarantees high and constant quality of our (generic) medicines. Pharmaceutical equivalence and bioequivalence assessment are the pillars under that system. But there are complex medicines where the question of equivalence is more challenging to answer. For biologicals the paradigm of similarity rather than equality (the emergence of ‘biosimilars’) was developed in the past decade. This has been a program where an evolutionary, science based approach has been chosen by the frontrunner regulatory body, the EMA, with a ‘learn and confirm’ character.In addition, there is another group of complex drugs, the non-biological complex drugs, NBCDs, where the generic paradigm can be challenged as well. The NBCDs are defined as: 1. consisting of a complex multitude of closely related structures; 2. the entire multitude is the active pharmaceutical ingredient; 3. the properties cannot be fully characterized by physicochemical analysis and 4. the consistent, tightly controlled manufacturing process is fundamental to reproduce the product. NBCDs encompass product families such as the glatiramoids, liposomes, iron–carbohydrate colloids and many candidates of the group of the upcoming nanoparticulate systems. Following the main principles of regulatory pathways for biologicals (with appropriate product-by-product adjustments), instead of that for small molecules, would be the more logical strategy for these NBCDs.The status and outstanding regulatory issues for biosimilars and NBCD-similars/follow on versions were discussed at a conference in Budapest, Hungary (October 2014) and this commentary touches upon the issues brought up in the presentations, deliberations and conclusions

    Nanoparticle iron medicinal products - Requirements for approval of intended copies of non-biological complex drugs (NBCD) and the importance of clinical comparative studies

    No full text
    Currently, most countries apply the standard generic approach for the approval of intended copies of originator nanoparticle iron medicinal products, requiring only demonstration of bioequivalence to a reference medicinal product by bioavailability studies. However, growing evidence suggests that this regulatory approach is not appropriate. Clinical and non-clinical studies have shown that intended copy preparations of nanoparticle iron medicinal products can differ substantially from the originator product in their efficacy and potentially in their safety profile. An adapted regulatory pathway (separate from the standard generic approach) with defined data requirements is needed for approval of intended copies of iron medicinal products. Here, we discuss the difficulties involved in assessing therapeutic equivalence of nanoparticle iron medicinal products and suggest key concepts of a regulatory approach. Standardized non-clinical comparative studies are necessary but, as demonstrated in the reported clinical data, they may not be sufficient to demonstrate a comparable efficacy and safety profile. Validated, prospective, comparative clinical studies might be needed, in addition to non-clinical studies, in order to enable appropriate assessment of therapeutic equivalence. Furthermore, including brand names in addition to the International Non-proprietary Names (INNs) in safety reports could enable effective safety monitoring of intended copies and originator products

    Medication practice in hospitals: are nanosimilars evaluated and substituted correctly?

    No full text
    This study investigates the drug selection and dispensing behaviour of hospital pharmacists of intravenous iron products including iron sucrose and iron sucrose similar, with special emphasis on substitution and interchangeability in France and Spain. Iron-carbohydrate complex drugs represent different available intravenous iron drugs and are part of the non-biological complex drug (NBCD) class, an expanding drug class with up to 30 brands available in intravenous pharmacotherapy and over 50 in clinical development. Follow-on versions of iron sucrose have appeared in some markets such as France and Spain, which were authorised by the generic approval pathway. However, differences in clinical efficacy and safety of iron sucrose similars compared with the reference originator drug Venofer have been observed, putting a question mark on their equivalence as assessed for authorisation and consequently their substitutability and interchangeability.; 70 French and 70 Spanish hospital pharmacists were surveyed via an online questionnaire on their formulary selection and dispensing behaviour of intravenous iron medicines.; There is little awareness about the characteristics of this class of drugs and the reported differences in safety and efficacy between iron sucrose and iron sucrose similars. In approximately 85% of cases the intravenous iron is chosen according to the hospital formulary. In 30% (France) and 34% (Spain) of cases an iron sucrose similar was dispensed because the formulary requires dispensing an alternative lower cost drug when available. In 26% (France) and 52% (Spain) of cases the physician is not informed on such a medication change using a similar product.; Evaluation of NBCD similars for substitution and interchange by hospital pharmacists is rarely based on scientific and clinical criteria but rather on cost aspects only, which does not ensure safe, efficacious and cost-effective use of such drugs

    Criticality of Surface Characteristics of Intravenous Iron–Carbohydrate Nanoparticle Complexes: Implications for Pharmacokinetics and Pharmacodynamics

    No full text
    Un-complexed polynuclear ferric oxyhydroxide cannot be administered safely or effectively to patients. When polynuclear iron cores are formed with carbohydrates of various structures, stable complexes with surface carbohydrates driven by multiple interacting sites and forces are formed. These complexes deliver iron in a usable form to the body while avoiding the serious adverse effects of un-complexed forms of iron, such as polynuclear ferric oxyhydroxide. The rate and extent of plasma clearance and tissue biodistribution is variable among the commercially available iron–carbohydrate complexes and is driven principally by the surface characteristics of the complexes which dictate macrophage opsonization. The surface chemistry differences between the iron–carbohydrate complexes results in significant differences in in vivo pharmacokinetic and pharmacodynamic profiles as well as adverse event profiles, demonstrating that the entire iron–carbohydrate complex furnishes the pharmacologic action for these complex products. Currently available physicochemical characterization methods have limitations in biorelevant matrices resulting in challenges in defining critical quality attributes for surface characteristics for this class of complex nanomedicines

    Nanomedicines: The magic bullets reaching their target?

    No full text
    Nanomedicines, since the approval of the first one in the 1950s, have been accompanied by expectations of higher efficiency and efficacy, compared to less complex drugs. The fulfilment of those expectations has been slower than anticipated, due to the high complexity of nanomedicine drugs combined with a lack of scientific understanding of nanomedicine interactions with biological systems. The unique properties of their size and their surface composition create difficulties in their physicochemical characterization, and as a consequence, difficulty in assessing the similarity of follow-on products (nanosimilars) to originator nanomedicines. During the 2018 European Federation for Pharmaceutical Sciences (EUFEPS) annual meeting "Crossing the barrier for future medicines" in Athens, there were several sessions on nanomedicines organised by the EUFEPS Nanomedicine Network. This review focuses on the session "Nanomedicines and nanosimilars: how to assess similar?", discussing the nature of nanomedicines, the regulatory aspects of the topic and the impact of practical use and handling of such medicinal products. Emphasis is put on the consequences their nanosize-related properties have on the establishment of their critical quality attributes and how this affects the demonstration of bioequivalence of nanosimilars to their originator products. The lack of an appropriate and harmonized regulatory evaluation procedure and the absence of corresponding education are also discussed, especially the uncertainty surrounding the practical use of nanosimilars, including the higher healthcare cost due to less than satisfactory number of safe and efficacious nanosimilars in the market
    corecore